FOSSILS

Fossils of the Paleozoic Formations of Southeastern Arizona

by Jan Wilt and Dietmar Schumacher, 1978

This article is a guide to some of the more diagnostic and easily identified fossils from Paleozoic formations in southern Arizona. Emphasis is on fossil groups rather than species and genera, and particularly on those which a geologist could identify in the field with minimum chances of error. The groups stressed are fusulinid foraminifera, stromatoporoids, corals, brachiopods, gastropods, pelecypods, cephalopods, and trilobites.

This guide is oriented toward the field geologist with little or no training in paleontology. It should be used in conjunction with the Bryant (1968) article from Arizona Geologic Society Guidebook II. The fossil illustrations were based, wherever possible, upon specimens in the University of Arizona collection. For correct generic or specific identification, consult a professional paleontologist or refer to paleontology reference books, such as Moore, Lalicker, and Fisher (1952, Invertebrate Fossils), Shrock and Twenhofel (1953, Principles of Invertebrate Paleontology); Shimer and Shrock (1944, Index Fossils of North America); and the various volumes of the Treatise on Invertebrate Paleontology (1953 to date).

Cambrian

Recognition of Cambrian strata should be based on a profusion of trilobites to the exclusion of nearly all other fauna, except hyolithids, inarticulate brachiopods (such as <u>Lingulepis</u>, etc.), and a few primitive articulate brachiopods. Corals, bryozoans, and stromatoporoids common in younger Paleozoic strata are not found in Cambrian rocks. Cephalopods, gastropods, and articulate brachiopods should be rare or absent.

Examples of Middle and Upper Cambrian trilobites include <u>Agraulos</u>, <u>Olenoides</u>, <u>Maladia</u>, <u>Elvinia</u>, and <u>Tricrepicephalus</u>. Examples of Upper Cambrian brachiopods include <u>Micromitra</u>, <u>Dicellomus</u>, <u>Billingsella</u>, <u>Lingulepis</u>, and <u>Stenotheca</u>.

Ordovician

In Arizona, both Lower and Upper Ordovician strata are present in the extreme southeastern portion of the state (but not in the Tucson area). The Lower Ordovician is difficult to recognize paleontologically and is best done by the absence of certain groups - stromatoporoids, corals, and bryozoans. Gastropods, such as Raphistoma and Ophileta, nautiloid cephalopods such as Orthocena, and a few trilobites and articulate brachiopods occur in the Lower Ordovician, but they cannot easily be distinguished from those in the Upper Ordovician.

Silurian

Silurian rocks have not been recognized in Arizona, but they do occur in neighboring New Mexico.

Devonian

Recognition of the lower Upper Devonian is based on the brachiopod genus, Atrypa. Important associated taxa are the tabulate corals, Favosites and Coenites, the colonial rugose corals, Hexagonaria and Pachyphyllum, hemisperical and branching stromatoporoids, and a few other forms. Splitferid, productid, and rhynchonellid brachiopods first appear in force in the Devonian, but all continue into the Upper Paleozoic. Vertebrate remains, represented by fish teeth, bones, and plates, are locally abundant, but similar remains also occur in younger Paleozoic formations.

Upper Upper Devonian strata are characterized by the absence of the aforenamed corals and brachiopods and the presence of the sponge, <u>Ensiferites</u>, and the large rhynchonellid <u>Paurorhyncha</u>, and the large spiriferids, <u>Syringospira</u> and <u>Cyrtospirifer</u>.

Carboniferous (Mississippian-Pennsylvanian) and Permian

Productid brachiopods -- dictyoclostids, linoproductids, and echinoconchids -- are by far the most diagnostic indicators for the Permo-Carboniferous. These productids should be associated with a rich and varied fauna of spiriferid brachiopods, fenestellid bryozoans, and, in the younger strata, fusulinids.

Common, but less diagnostic, associates are the productellid, rhynchonellid, rostrospiriferid, leiorhynchid, strophomenid, punctospiriferid, and terebratulid brachiopods. Trilobites, goniatite and nautiloid cephalopods and pectinoid pelecypods may be found but are usually rare. Particularly noteworthy is the complete absence of the stromatoporoids.

Mississippian

Mississippian rocks can be rather difficult to delineate paleontologically because so much of the fauna is rather bland spiriferid and productid brachiopods which can easily be interpreted as Permo-Pennsylvanian. The absence of the morphologically distinct fusulinids and the brachiopods Neospirifer, Juresania, and Derbyia, which are all characteristic of the Pennsylvanian and Permian, suggests rocks of Mississippian age.

The Mississippian bears an abundant spiriferid fauna which generally lacks rib bundling. Along with these will be a fair somplement of dictyoclostid, echinoconchid, and linoproductid brachiopods that are typically smaller than many of their Permo-Pensylvanian descendants.

Co.als, both solitary and colonial, are a common element of most Mississippian rocks were carbonate is the major lithology. In Arizona, the easily recognized <u>Lithostrotionella</u> is found only in the Mississippian. Syringoporid corals are also common in Mississippian strata, but they also occur in the Pennsylvanian and Permian. The distinctive bryozoan <u>Archimedes</u> has only been reported from the Upper Mississippian Paradise Formation.

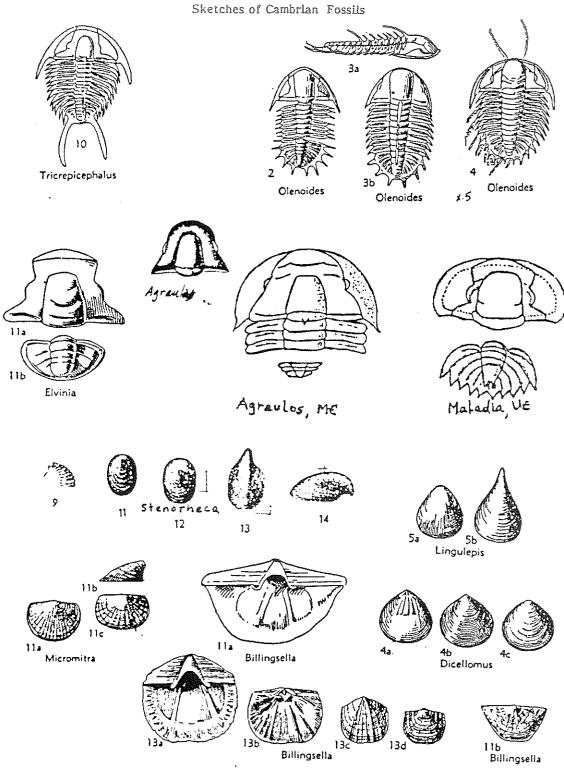
Permo-Pennsylvanian

Arizona's Pennsylvanian and Permian formations are characterized by fusulinids, Neospirifer, Derbyia, Meekella, Juresania, and the solitary rugose coral Lophophyllidium. Along with these should be a fair productid population consisting of echinoconchids, linoproductids, and dictyoclostids.

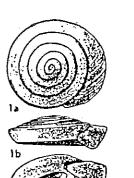
Pennyslvanian

The Pennsylvanian may be difficult to distinguish from the Permian because they contain the same fossils with little diagnostic for the early or late portions. The fusulinids of the Pennsylvanian are, on the average, considerably smaller than those of the Permian.

In southern Arizona, the easily recognized colonial coral <u>Chaetetes</u> occurs only in the Pennsylvanian Black Prince and lower Horquilla/Naco formations. The distinctive bryozoan <u>Prismopora</u> also is a good guide fossil for the Horquilla and Naco formations.


Permian

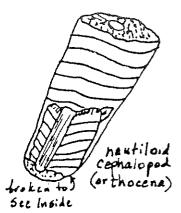
The Permian has, in addition to the characteristic Permo-Pennsylvanian fossils, several very diagnostic and easily identifiable forms. The large gastropod Omphalotrochus is one of the more common fossils in the Colina Limestone and serves as a guide fossil for that formation. The sponge Actinocoelia is also restricted to the Permian, occurring in considerable abundance in the Concha Limestone.

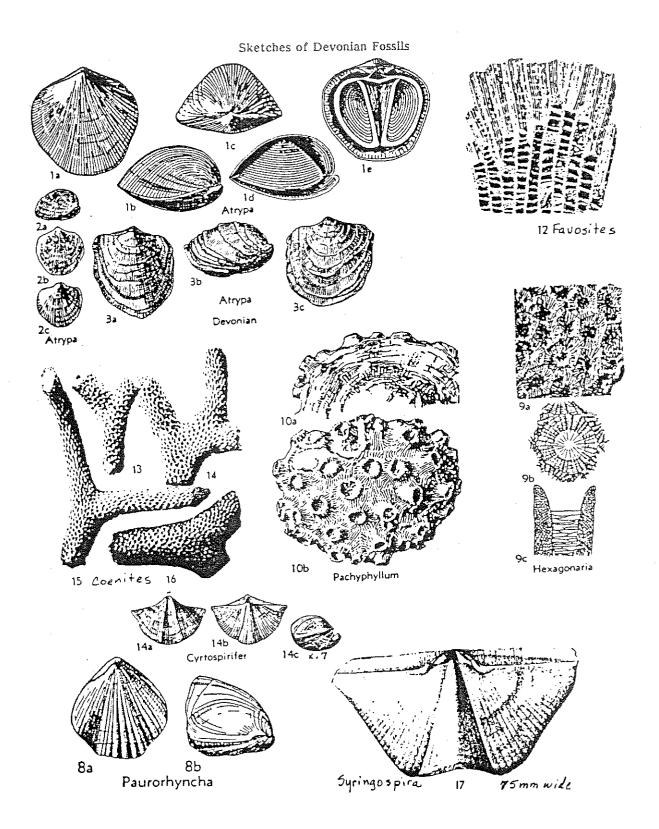

List of Common Paleozoic Fossils

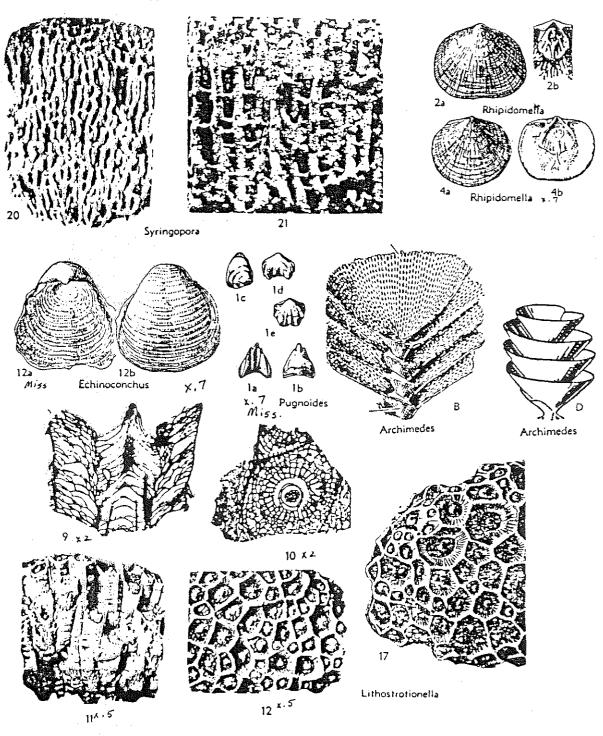
Most common Paleozoic invertebrate fossils- S.E. AZ

```
Pennsylvanian
Cambrian
                                 corals
  brachiopods
                                   Caninia
    Dicellomus
                                   Chaetetes
    Lingulella
                                   Lophophyllidium
    Lingulepis
                                   Michelinia
    Micromitra
                                   Syringopora
    Billingsella
                                 bryozoans
  trilobites
                                   Prismopora
    Cedaria
                                 brachiopods
    Eldoradia
                                   Antiquatonia
    Tricrepicephalus
                                   Composita
    Elvinia
                                   Derbyia
  algal pisolites
                                   Echinaria
  trilobites trails
                                   Juresania
                                   Linoproductus
Ordovician
                                   Neospirifer
  gastropods
                                   Rhipidomella
    Ophileta
                                   Anthracospirifer
    Raphistoma
  cephalopods
                               Permian
    Endoceras
                                 corals
                                   Lophophyllidium
Devonian
                                 brachiopods
  corals
                                   Derbyia
    Hexagonaria
                                   Neospirifer
    Pachyphyllum
                                 gastropods
    Coenites
                                   Omphalotrochus
  brachiopods
                                 echinoids
    Atrypa
                                  Archaeocidaris
    Spinatrypa
                                 sponges
     Cyrtospirifer
                                  Actinocoelia
    Tenticospirifer
                                 scaphopods
    Paurorhyncha
                                   Plagioglypta
    Platyrachella
    Schizophoria
                                 also brach's
    Theodossia
                                   Peniculauris (Dictyoclostus)
    Devonoproductus
                                    Chonetes
  stromatoporoids
                                 gast
    Amphipora
                                   Euomphalus
  sponge
                                 pelecy
    Ensiferites (percha)
                                   Aviculopinna
    Astraeospongia
                                   Myalina
Mississippian
  corals
    Vesiculophyllum
    Amplexizaphrentis
   Lithostrotionella
   Syringopora
  bryozoans
   Archimedes
 brachiopods
   Rhipidomella
   Echinoconchus
  crinoid stems
```


Ordovician







Raphistoma

Sketches of Mississippian Fossils

Jan C. Wilt, May 1993